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ABSTRACT 

A new empirical correlation of second virial coefficients for pure polar gases has been 
developed by extending the Mak-Lielmezs correlation for non-polar fluids. The proposed 
extension requires the availability of the critical pressure and temperature, the Pitzer acentric 
factor w, the dipole moment and the knowledge of an empirical substance-dependent factor 
x. The compounds correlated include acetaldehyde, acetone, acetonitrile, alcohols, ethers, 
ketones, phenol and water. Predictions agree very- well with the experimental data and the 
values obtained by means of the Tosonopoulos correlation. 

INTRODUCTION AND THEORETICAL DEVELOPMENT 

In the analysis of vapour-liquid equilibrium behaviour, non-ideality of 
the vapour phase should be taken into consideration. Often for calculations 
at low to moderate pressures, the density is less than half the critical density 
and the virial equation of state truncated after the second term provides an 
excellent estimate of the vapour phase fugacity coefficient. As a matter of 
fact, a number of outstanding methods have been developed [l-12] for 
predicting the second virial coefficient of non-polar and polar gases. Re- 
cently, Mak and Lielmezs 1121, using a cubic equation of state, developed an 
expression for the calculation of second virial coefficient of gaseous non-polar 
substances as follows 

Solving eqn. (1) for (Y, we have 

(2) 
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where 

BP 
3,= j$ 

c 
(3) 

Following the Pitzer-Curl [l] and Tsonopoulos [6] development of the 
three parameter theorem of corresponding states and utilizing the 
Shaw-Lielmezs [13] model of generalized F function for the Redlich- 
Kwong-type equation of state, Mak and Lielmezs [12] suggested that the QI 
function (eqns. (1) and (2)) be set for normal fluids as 

ff(T,, w) = cu’O’(T,) + w&)(lj) (4) 

where 

Equation (5) represents the (Y function of simple fluids while eqn. (6) 
corrects for the deviation of normal fluids from simple fluids. Mak and 
Lielmezs [12] expanded eqns. (5) and (6) as follows 

(Y(O) = - 1.4524905 + 14.360017/T, - 45.000285/T,2 

+ 14,078304/T; + 1 .7835426/T7 (7) 

ix(‘) = -4.3816022 + 15205023/T, - 20.874489/T~ 

+12.697209/T; - 2.5851848/T: (8) 

To account for the behaviour of polar and associating fluids [6], the (Y 
function has been extended (eqn. 4) to include a correcting term, I*:cY(~)( T,) 
consisting of the reduced dipole moment p,. raised to the power of x and an 
ac2)( T,) function, so that the enlarged (Y function is given by 

a( T,, w, p,,) = a'"'(T,) + wd')(T,) + ,u;d2)(Tr) (9) 

where 

pt= 105p2Pc/q2 

with 

(101 

a”‘(T,) = i c~~T(-~-‘) 01) 
i=l 

and x is a substance-dependent coefficient. 
To determine the numerical values of coefficients ci2 and the number of 

terms appearing in eqn. (ll), the criterion of minimum variance of the curve 
fit was used following Mak and Lielmezs [12]. 



The numerical values 
means of linear multiple 
ing 
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of coefficients ci2 (eqn. (11)) were determined by 
regression methods letting x = 1; that is, consider- 

= t ci2q(-6-i) 02) 
i=l 

then, using the ci2 coefficient valued computed using eqn. (12), the optimum 
value of the exponent x * (Table 1) was determined in each case for each 
compound in such a way as to minimize the RMSS error in the calculated 
value of the second virial coefficient. 

The expanded form of the LX(~)(~) function in terms of the calculated 
coefficients ci2 (Eqn. (12)) is 

(Y(~)( 3”) = -0.008019636/T,7 + 0.01092317,@ - 0.003505639,‘1”’ r 03) 

The final expression of the CY(~)( T,) function (eqn. (13)) was obtained from a 
set of 276 experimental data points representing 19 highly polar and 
associating fluids (see Table 1) with a variance of 0.00002798. All experi- 
mental data used were taken from the recent compilation of second virial 
coefficients by Dymond and Smith [14]. As the data used were thought to be 
of sufficient reliability, no further evaluation of their accuracy was made. 

DISCUSSION 

The second virial coefficients (eqns. (1) and (3)) have been calculated 
using the proposed correlations (eqns. (7)-f 11) and (13)) for 19 polar and 
associating fluids. Table 1 compares the experimental virial coefficients with 
the values obtained in this work and those calculated by means of the 
Tsonopoulos correlation [6]. For normal fluids the proposed method (eqns. 
(4)-(8) appears to be superior to the Tsonopoulos correlation for the 
compounds studied 1121. Table 1 indicates that the predictions made by the 
extended calculation method for polar compounds (eqns. (7)-(11) and (13)) 
agree very well with the available experimental data and the results obtained 
by means of the Tsonopoulos correlation [6], the Tsonopoulos method 
perhaps possessing a very slight edge in the curve-fit accuracy over the 
proposed correlation (Table 1). Figure 1 shows the second virial coefficient 
values as calculated by the proposed method (eqns. (7)-(11) and (13) and 
Table 1) and the Tsonopoulos correlation, and the available experimental 

* As a measure of x stability, the x range over which there is a 10% or less variation 
(increase) of RMS% error due with respect to the optimum (least) x, is given in Table 1. 
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Reduced Temperature, T, Reduced Temperature,Tr 

Fig. 1. Second virial coefficient B of water and methanol versus reduced temperature T,. 

values plotted against temperature for water and methanol, two hydrogen- 
bonding polar fluids. Figure 2 gives similar second virial coefficient versus 
temperature plots for two non-hydrogen-bonding polar fluids, diethyl ether 

Acetone 

- B talc. 
- - B Tson. 

0 

c 064 or* 118 --&ii-- 
Reduced Temperatu;ey T 

/ 04 

F 
Fig. 2. Second virial coefficient B of diethyl ether and acetone versus reduced temperature, 

r,* 
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and acetone. As can be seen from Figs. 1 and 2, both methods compare very 
well with the experimental data for al1 polar compounds for all temperature 
ranges considered. The Tsonopoulos correlation, in addition to the acentric 
factor o, the critical temperature T, and pressure PC, and the reduced dipole 
moment pr, is curve-fitted with one substance dependent parameter (non- 
hydrogen and weakly hydrogen-bonding polar substances) or with two 
substance dependent parameters (hydrogen-bonding polar substances) while 
the proposed method, in addition to the same basic parameters (w, T,, PC 
and p,), uses only one curve-fitted substance dependent constant, the 
optimum x coefficient value (Table 1). It appears, therefore, that the 
proposed method is altogether simpler to use than the Tsonopoulos correla- 
tion (Table 1 and Figs. 1 and 2). Equations (7), (8) and (13) are simple linear 
polynomials describing the LX term as a function of the variable T,. This 
power series expansion in T, for the given (Y function has a radius of 
convergence which extends from the point of expansion to the nearest 
singularity in the function so that a power series expansion becomes useless 
beyond that point [15]. Because of this weakness in the convergence proper- 
ties of the given series, we have set the experimentally tested curve-fitting 
ranges for the state parameter T, to be: 0.3 < T, ( 14.0 for normal fluids 
(eqns. (4)-(8)), and 0.52 < T, < 2.0 for all polar fluids (eqns. (4)-(11) and 
(13), Table 1 and Figs. 1 and 2). Studies to extend the range of application 
of the proposed correlation to include mixtures have been started. The 
results obtained and the comparisons made (Table 1, Figs. 1 and 2) strongly 
support the proposed method. 

NOMENCLATURE 

B second virial coefficient 
c power series coefficient defined by eqns. (5), (6) and (11) 
N number of data points 
P pressure 
R universal gas constant 
T temperature 
x substance dependent coefficient, defined by eqn. (9) 

Greek Ietters 

a function defined by eqns. (2) and (9) 

ia, 52, 
Pitzer acentric factor 
dimensionless entities 

p dipole moment 
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Subscripts 

C critical state 
r reduced state 
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